Lesson plan

Name if the faculty : Dr. Gurbrinder Kaur

Discipline : Computer Science Engineering

Semester : 3rd

Subject : Data Structures Using C

Lesson Plan Duration: 15 weeks (From August, 2019 to November 2019)

Work Load (Lecture/ Practical) per week (in hours): Lecture-03, Practical-02

Week	Theory		Practical	
	Lecture day	Topic(Including assignment/test)	Practical Day	Topic
1st	1 st	Introduction: Basic Terminologies: Concept of Data Structure,	1st	Write a program to search an element in the array using Linear Search.
	2 nd	Choice of right Data Structure, Algorithms,		
	$3^{\rm rd}$	How to design and develop algorithm		
2nd	1 st	Complexity of algorithms	2nd	1. Write a program to search an element in an array using binary search algorithm.
	2 nd	Operations:		2. Write a program to show all operation in an array.
	3 rd	Linear Search		
3rd	1st 2nd	Binary Search Techniques and their complexity	3rd	Write a Program to order alphabets of a word in Lexical order.
	3rd	analysis. Revision of Unit I		

4th	1st	Stacks and Queues: 4th	1. WAP Program to
		Stack and its operations, Algorithms and their complexity	create Stack &
		analysis,	perform its operations
	2nd	Applications of stacks, Expression Conversion and evaluation	2. Write a program to implement Stacks
	3rd	corresponding algorithms and complexity analysis	using arrays
5th	1st	Queues: Types of Queue: Simple5th Queue,	1. WAP to program to make a queque and perform all
	2nd	Circular Queue ,Priority Queue	operations : 1. Insertion
	3rd	Operations on each types of Queues: Algorithms and their analysis.	2. Deletion3. Traversing
6th	1st	Linked Lists: 6th Singly linked lists, Representation in memory	Write a Program to create a Linked List & perform the following operations:
	2nd	Linked List Operations: Insertion Deletion	a. Insert an element in the beginningb. Insert an element at the
	3rd	Linked List Operations Traversing Searching	end c. Insert an element in between d. To delete a node e. Display the nodes f. Count elements
7th	1st	Linked Lists: Representation of 7th Stack and Queue	Convert the singly list to doubly linked list and perform all operations
	2nd	Doubly Linked List	perioriii aii operations
	3rd	Circular Linked List	
8th	1st	Trees: Introduction to trees 8th	Create a binary tree and
	2nd	Binary trees	implement the tree traversal
	3rd	Representation and traversal of trees	techniques of inorder, preorder and post order.
9th	1st	Types of binary trees 9th	WAP to implement Binary
	2nd	Threaded binary trees, B Trees	Tree using Linked List.
	3rd	B+ Tree, Application of trees	
10th	1st	AVL Trees 10th	WAP to Construct a
	2nd	Sorting and Hashing	Balanced Binary Tree (AVL Tree) for user
	3rd	Selection Sort	input input
11th	1st	Bubble Sort 11th	Write a Menu driven
	2nd	Insertion Sort	program to sort an array using the
	3rd	Quick Sort	following algorithm a. Selection Sortb. Merge Sortc. Insertion Sort

				d. Bubble Sort e. Quick Sort
12th	1st	Merge Sort	12th	WAP to Count Number of
	2nd	Heap Sort		Leaf Nodes in a Tree
	3rd	Performance and Comparison among all the methods		

13th	1st	Graphs: Introduction	13th	WAP to Find the Shortest
	2nd	terminology, matrix' representation	1	Path Between Two Vertices
	3rd	operations on graphs		Using Dijkstra's Algorithm.
14th	1st	Applications of graphs	_14th	Revision Questions
	2nd	Revision		
	3rd	Revision		